Modelling of impaired cerebral blood flow due to gaseous emboli.
نویسندگان
چکیده
Bubbles introduced to the arterial circulation during invasive medical procedures can have devastating consequences for brain function but their effects are currently difficult to quantify. Here we present a Monte Carlo simulation investigating the impact of gas bubbles on cerebral blood flow. For the first time, this model includes realistic adhesion forces, bubble deformation, fluid dynamical considerations, and bubble dissolution. This allows investigation of the effects of buoyancy, solubility, and blood pressure on embolus clearance. Our results illustrate that blockages depend on several factors, including the number and size distribution of incident emboli, dissolution time and blood pressure. We found it essential to model the deformation of bubbles to avoid overestimation of arterial obstruction. Incorporation of buoyancy effects within our model slightly reduced the overall level of obstruction but did not decrease embolus clearance times. We found that higher blood pressures generate lower levels of obstruction and improve embolus clearance. Finally, we demonstrate the effects of gas solubility and discuss potential clinical applications of the model.
منابع مشابه
Cerebral Hyperperfusion after Revascularization Inhibits Development of Cerebral Ischemic Lesions Due to Artery-to-Artery Emboli during Carotid Exposure in Endarterectomy for Patients with Preoperative Cerebral Hemodynamic Insufficiency: Revisiting the “Impaired Clearance of Emboli” Concept
The purpose of the present study was to determine whether cerebral hyperperfusion after revascularization inhibits development of cerebral ischemic lesions due to artery-to-artery emboli during exposure of the carotid arteries in carotid endarterectomy (CEA). In patients undergoing CEA for internal carotid artery stenosis (≥70%), cerebral blood flow (CBF) was measured using single-photon emissi...
متن کاملComputational modelling of emboli travel trajectories in cerebral arteries: influence of microembolic particle size and density
Ischaemic stroke is responsible for up to 80% of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral ar...
متن کاملشناسایی میکرو آمبولی مغزی در سیگنال داپلر از روی ویژگی های غیر خطی
Abstract: An embolus is a blood clot, a fat globule or gas bubbles that may be freely circulating in bloodstream can stop the blood flow and lead to ischemia. In real time assessment of blood flow by Trans Cranial Doppler (TCD) method, travelling solid or gaseous micro emboli in the bloodstream by passing across the assessment area, causes a short time signal with high intensity. While TCD reco...
متن کاملNovel emboli protection cannula during cardiac surgery: first animal study.
BACKGROUND Stroke after open heart surgery is a major cause of morbidity and mortality. Up to 60% of intraoperative cerebral events are caused by emboli generated by manipulations of the aorta during surgery. This is the first animal study evaluating the safety and efficacy of a novel aortic cannula designed to extract solid and gaseous emboli during cardiac surgery. METHODS Seven domestic pi...
متن کاملSimulation study of Hemodynamic in Bifurcations for Cerebral Arteriovenous Malformation using Electrical Analogy
Background and Objective: Cerebral Arteriovenous Malformation (CAVM) hemodynamic is disease condition, results changes in the flow and pressure level in cerebral blood vessels. Measuring flow and pressure without catheter intervention along the vessel is big challenge due to vessel bifurcations/complex bifurcations in Arteriovenous Malformation patients. The vessel geometry in CAVM patients are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 58 13 شماره
صفحات -
تاریخ انتشار 2013